

34th edition of the International Energy Workshop

June 3rd — 5th 2015, Abu Dhabi

An optimisation model for supporting investment decisions in biorefineries: a European case study

Anna Panteli, ^a Sara Giarola,^b Nilay Shah ^{a*}

^a Chemical Engineering Department, Imperial College London, London, SW7 2AZ, UK
 ^b Earth Science & Engineering Department, Imperial College London, SW7 1NA, UK

* Corresponding author (Nilay Shah). Tel.: +44 20 7594 6621; fax: +44 20 7594 6606. E-mail address: n.shah@imperial.ac.uk

Outline

- □ Introduction
 - □ biorenewables supply chains optimisation
- Methodology
 - □ Mixed Integer Linear Programming (MILP)
- □ European case study Organosolv-based biorefineries
- Concluding remarks

Supply chains in industry

A supply chain (SC) is an integrated manufacturing process wherein a number of various entities (e.g., suppliers, manufacturers, distributors, retailers) work together to convert raw materials into final products, and deliver them to customers. (Shah, 2005)

Beamon, 1998

Extending SCs to renewables

Suppliers → biomass growers Manufacturers → biorefineries Final Product Distributors/retailers

Fossil vs renewable-based infrastructures

Fossils:

- ✓ Highly developed infrastructures electricity and gas delivery to consumers at high efficiencies and low costs
- ✓ Large, centralised, continuous generation and processing coupled with national and continental scale pipeline and cable distribution networks

Renewables:

- Integration of spatially and temporally distributed sources of primary energy (wind, solar, biomass, etc.)
- Decentralisation of energy infrastructures, overcoming inefficiencies in co-ordination, complex logistics and economies of scale

Biorenewables supply chains: plant scale

Imbalance between biomass availability and energy demand sites Biomass (e.g. corn stover) spread across a region Trade-off — collection distance vs economy of scale

June 3rd 2015

Biorenewable supply chains: time

- Seasonality of biomass
 straw: in summer autumn
 wood: in winter
- Continuous biomass supply
 storage
- Biomass quality endangered as time passes since harvest
- Pretreatment
 - ✓ biomass fractionation into cellulose, hemicellulose, lignin
 - ✓ highest cost share

Introduction

Potential biomass conversion routes

June 3rd 2015

Integrating SCs and technology superstructures

SC models

- Capacity planning of processing facilities
- ✓ Geographical locations of plant sites
- ✓Logistics
- ✓ Seasonality and biomass pre-processing

□ Technology superstructure models

 ✓ synthesis blocks representing functional modules in the process and contributing to the objective functions (Yuan and Chen, 2012)

Methodology framework

Model formulation

Economic objective function:

$$OBJF = \sum_{t} TP_t \ , \ \forall t \in T$$

$$\Box$$
 where: t is one-month period $(t \in T, T = \{1, ..., 12\})$

*TP*_t is the net profit of the network at time t $[\in]$

- □ $TP_t = \operatorname{Re} v_t TC_t$, $\forall t \in T$ Rev_t are the revenues at time t [€/month] TC_t is the total cost (capital and operational) at time t [€/month]
- Decision variables: planning (location and size of biorefinery, storage facilities, crop sites) & operational (optimal logistics, biomass mix)
 Mass balances: biomass & product

Logical constraints (e.g. maximum of one facility to be established per cell at time t)

Organosolv Pretreatment

Organosolv size (kt of dry biomass)		Unit Production cost (€/t)		Ir	Capital vestment (M€)
Small (150)		105		230	
Medium (325)		80		345	
Large (500)		72		450	
Biomass type	Cellulose (t/tdm biomass)		Hemicellul OSE (t/tdm biomass)		Lignin (t/tdm biomass)
Winter wheat	().505	0.228	}	0.267
Winter barley		0.52	0.23		0.26
Corn stover		0.51	0.23		0.26

June 3rd 2015

Case study

Local energy system analysis

Full second generation supply chain in the South-West of Hungary:

- minimum 13,000 t of cellulose on regional basis
- ► 587,000 ha (arable land)

Biomass	Yield (t of dry/ha)	Cost (€/t of dry biomass)
Wheat	3.66	40
Barley	3.81	40
Corn stover	8.05	43

June 3rd 2015

Transport infrastructure

- Actual transport distance
 - ✓ tortuosity factor
 - ✓ cell-to-cell straightline distance
- Unit transport cost
 - ✓ 0.5 €/t/km

Case study description

□ Hungarian case study of an Organosolv-based SC:

- ✓ Set of products (cellulose, hemicellulose and lignin).
- ✓ Set of candidate processes
- ✓ Set of transportation modes (trucks)
- ✓ Set of potential geographical sites (102 cells of 225 km² each)
- ✓ Potential, spatially explicit availabilities of the raw material (winter wheat straw, winter barley straw and corn stover for July-October)
- Goal:
 - Determine the size and location of plants, storage and cultivation sites, the feedstock mix and the logistics
 - $\checkmark\,$ Fulfil the demand over the entire planning horizon
 - ✓ Maximisation of net system profit

Supply chain configuration

Process facilities

 2 medium (325 kt pa)
 2 large (500 kt pa)

 Biomass crop widely distributed
 Storage on-fields

Biomass provision

Results: investment profitability

Item	Value [€/y]		
Total Operating Cost	$4.56 \cdot 10^{8}$		
Annualised Investment Cost	$1.64 \cdot 10^{8}$		
Cost Breakdown			
Biomass	22%		
Processing	39%		
Transport	22%		
Storage	17%		

- Market for product not available as yet
- Product price subject to uncertainty

June 3rd 2015

- 15 % discount rate
- ✓ Net Present Value (NPV) = 730 M€
- ✓ Internal Rate of Return (IRR) = 23 %

Concluding remarks

- Optimisation models represent a powerful tool to shed light on the development of novel production systems
- They could support the development of biorefining systems and allow
 - ✓ screening product portfolios and alternative configurations
 - \checkmark investigating technical feasibility of production systems
 - evaluating key performance indicators (e.g. costs, emissions) for process technology superstructure with a portfolio of selected biobased products and platform chemicals
 - analysing key source of uncertainties (e.g. technological yields, capital and operating costs) and their evolution over time

References

- Aden, A. et al., 2002. NREL/TP-510-32438. NREL, CO, US.
- Beamon, B.M. (1998). Int. J. Prod. Econ., 55, 281-294
- Giarola, S., Zamboni, A. & Bezzo, F. (2011). Computers and Chemical Engineering, 35: 1782-1797.
- Kamm, B., Gruber, P.R., Kamm, M. (Eds.), 2006. Biorefineries Industrial Processes and Products: Status Quo and Future Directions. Wiley VCH, Weinheim.
- Yuan, Z., Chen, B. (2012). AIChE Journal 58, 3370-3389.
- Shah, N., 2005. Comput. Chem. Eng. 29, 1225-1235.
- Van der Linden, R., Huijgen, W., J. J. & Reith, J., H. (2012). Ethanol-based Organosolv Biorefineries: Feedstock-Felxibility & Economic Evaluation. www.ecn.nl

This work was carried out within the EC Reneseng-607415 FP7-PEOPLE-2013-ITN framework program